基本情報(Profile)
最終更新日(Last Updated)2024/06/27酒井 大史
Hiroshi Sakai
酒井 大史
愛媛大学(Ehime University)
プロテオサイエンスセンター(Proteo-Science Center)
アンドロゲン(androgen) |
筋ジストロフィー(muscular dystrophy) |
筋再生(muscle regeneration) |
細胞治療(cell therapy) |
運動器(Musculoskeletal system) |
骨格筋(Skeletal muscle) |
骨格筋発生(myogenesis) |
複合領域(Complex systems) | 健康・スポーツ科学(Health/Sports science) | スポーツ科学(Sports science)(Sports science) |
複合領域(Complex systems) | 健康・スポーツ科学(Health/Sports science) | 応用健康科学(Applied health science)(Applied health science) |
教員(Faculty) - 助教相当(Assistant Prof. Equiv.)
自己アピール(Appealing Points)
東京都出身。2008年に麻布大学獣医学部を修了し、京都大学大学院の医学研究科へ進学。学位取得後は、フランス政府給費留学制度のポスドクとして渡仏し、フランスに計5年間在籍する。2018年からは愛媛大学プロテオサイエンスセンターに所属。パリ時代から現在に至るまで、さまざまな切り口から骨格筋を軸とした研究を展開している。
Find more details about my research profile on the HIRAKU-Global webpage.
研究活動(Research Activities)
- 論文(Published Papers)
-
2025/04/23 The splicing factor Acin1 is essential for embryonic development but has limited effects on muscle structure and homeostasis
Scientific Reports, 15(1) , Peer-Reviewed , 10.1038/s41598-025-98851-xhttps://www.nature.com/articles/s41598-025-98851-x.pdf 概要はこちら(Description) Apoptotic chromatin condensation inducer 1 (Acin1) is an RNA-binding protein involved in the regulation of alternative splicing, but its physiological function remains unclear. Global deletion of Acin1 causes embryonic lethality around E11.5, with mutants exhibiting developmental delays and increased apoptosis. Using conditional knockout mice, we found that skeletal muscle myofiber-specific Acin1 knockout mice (Acin1 MKO) are viable and fertile and that Acin1 MKO mice show enlarged myofibers and ongoing muscle damage and regeneration, characterized by increased central nuclei and embryonic myosin heavy chain expression. RNA-seq analysis revealed that Acin1 deletion altered the expression and splicing patterns of genes crucial for muscle function. Notable changes included modified splicing of genes associated with muscle disease and mitochondrial function, often resulting in the expression of gene variants typical of immature or diseased muscle. These findings suggest that Acin1 is essential for embryonic development and has limited effects on muscle structure and homeostasis via its regulation of gene expression and alternative splicing.
2024/09/18 The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via <i>Igf1</i> expression in male mice
Proceedings of the National Academy of Sciences, 121(39) , Peer-Reviewed , 10.1073/pnas.24077681210027-8424 https://pnas.org/doi/pdf/10.1073/pnas.2407768121 , 概要はこちら(Description) Androgens exert their effects primarily by binding to the androgen receptor (AR), a ligand-dependent nuclear receptor. While androgens have anabolic effects on skeletal muscle, previous studies reported that AR functions in myofibers to regulate skeletal muscle quality, rather than skeletal muscle mass. Therefore, the anabolic effects of androgens are exerted via nonmyofiber cells. In this context, the cellular and molecular mechanisms of AR in mesenchymal progenitors, which play a crucial role in maintaining skeletal muscle homeostasis, remain largely unknown. In this study, we demonstrated expression of AR in mesenchymal progenitors and found that targeted AR ablation in mesenchymal progenitors reduced limb muscle mass in mature adult, but not young or aged, male mice, although fatty infiltration of muscle was not affected. The absence of AR in mesenchymal progenitors led to remarkable perineal muscle hypotrophy, regardless of age, due to abnormal regulation of transcripts associated with cell death and extracellular matrix organization. Additionally, we revealed that AR in mesenchymal progenitors regulates the expression of insulin-like growth factor 1 (Igf1) and that IGF1 administration prevents perineal muscle atrophy in a paracrine manner. These findings indicate that the anabolic effects of androgens regulate skeletal muscle mass via, at least in part, AR signaling in mesenchymal progenitors.
2024 Cell-specific functions of androgen receptor in skeletal muscles
Endocrine Journal, 71(5), 437-445 , Peer-Reviewed , 10.1507/endocrj.ej23-06910918-8959 https://www.jstage.jst.go.jp/article/endocrj/71/5/71_EJ23-0691/_pdf , 2024 Epidermal growth factor receptor contributes to indirect regulation of skeletal muscle mass by androgen
Endocrine Journal , Peer-Reviewed , 10.1507/endocrj.EJ24-0410https://api.researchmap.jp/sakaihiros/research_projects/32470958 172237140 , 概要はこちら(Description) Androgen is widely acknowledged to regulate skeletal muscle mass, however, the specific mechanism driving muscle atrophy resulting from androgen deficiency remains elusive. Systemic androgen receptor knockout (ARKO) mice exhibit reduction in both muscle strength and muscle mass while skeletal muscle fiber specific ARKO mice have decreased muscle strength without affecting skeletal muscle mass in the limbs. Therefore, androgens may indirectly regulate skeletal muscle mass through effects on non-myofibers. Considering this, we investigated focusing on blood fluid factors that might play a role in the regulation of skeletal muscle mass under the influence of androgens. Using male mice model of sham, orchidectomy and DHT replacement, mass spectrometry for serum samples of each group identified epidermal growth factor receptor (EGFR) as a candidate protein involving the regulation of skeletal muscle mass affected by androgens. Egfr expression in both liver and epididymal white adipose tissue correlated with androgen levels. Furthermore, Egfr expression in these tissues was predominantly elevated in male compared to female mice. Interestingly, male mice exhibited significantly elevated serum EGFR concentrations compared to their female counterparts, suggesting a connection with androgen levels. Treatment of EGFR to C2C12 cells promoted phosphorylation of AKT and its downstream S6K, and enhanced the protein synthesis in vitro. Furthermore, the administration of EGFR to female mice revealed a potential role in promoting an increase in skeletal muscle mass. These findings collectively enhance our understanding of the complex interplay among androgens, EGFR, and the regulation of skeletal muscle mass.
2022/03 Uhrf1 governs the proliferation and differentiation of muscle satellite cells
iScience, 25(3), 103928 , Peer-Reviewed , 10.1016/j.isci.2022.1039282589-0042 https://api.researchmap.jp/sakaihiros/research_projects/12235885 , 2021/04 Myofiber androgen receptor increases muscle strength mediated by a skeletal muscle splicing variant of Mylk4
iScience, 24(4), 102303 , Peer-Reviewed , 10.1016/j.isci.2021.1023032589-0042 90561555 2021/01 Polyamine pathway is associated with muscle anabolic effects by androgen receptor ligand
JCSM Rapid Communications, 4(1), 57-74 , Peer-Reviewed , 10.1002/rco2.282617-1619 https://onlinelibrary.wiley.com/doi/pdf/10.1002/rco2.28 , 85054251 2021/01 DNA maintenance methylation enzyme Dnmt1 in satellite cells is essential for muscle regeneration
Biochemical and Biophysical Research Communications, 534, 79-85 , Peer-Reviewed , 10.1016/j.bbrc.2020.11.1160006-291X, 33310192 https://www.ncbi.nlm.nih.gov/pubmed/33310192 , 概要はこちら(Description) Epigenetic transcriptional regulation is essential for the differentiation of various types of cells, including skeletal muscle cells. DNA methyltransferase 1 (Dnmt1) is responsible for maintenance of DNA methylation patterns via cell division. Here, we investigated the relationship between Dnmt1 and skeletal muscle regeneration. We found that Dnmt1 is upregulated in muscles during regeneration. To assess the role of Dnmt1 in satellite cells during regeneration, we performed conditional knockout (cKO) of Dnmt1 specifically in skeletal muscle satellite cells using Pax7CreERT2 mice and Dnmt1 flox mice. Muscle weight and the cross-sectional area after injury were significantly lower in Dnmt1 cKO mice than in control mice. RNA sequencing analysis revealed upregulation of genes involved in cell adhesion and apoptosis in satellite cells from cKO mice. Moreover, satellite cells cultured from cKO mice exhibited a reduced number of cells. These results suggest that Dnmt1 is an essential factor for muscle regeneration and is involved in positive regulation of satellite cell number.
2020/10/01 SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis
Development, 147(19), 1-15 , Peer-Reviewed , 10.1242/dev.1859750950-1991, 32591430 https://www.ncbi.nlm.nih.gov/pubmed/32591430 , 概要はこちら(Description) Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the Sine oculis homeobox related Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior (TA) muscle. Mutant stem cells form hypotrophic myofibers that are not innervated but retain the ability to self-renew.
2020/06/26 SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis.
Development (Cambridge, England) , Peer-Reviewed , 10.1242/dev.185975概要はこちら(Description) Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the Sine oculis homeobox related Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior (TA) muscle. Mutant stem cells form hypotrophic myofibers that are not innervated but retain the ability to self-renew.
2020 Androgen receptor in satellite cells is not essential for muscle regenerations
Experimental Results, 1 , Peer-Reviewed , 10.1017/exp.2020.142516-712X https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2516712X20000143 , 78068451 , 概要はこちら(Description) <title>Abstract</title>The anabolic effects of androgen on skeletal muscles are thought to be mediated by androgen receptor (AR). Although multiple studies concerning the effects of AR in males have been performed, the molecular mechanisms of AR in skeletal muscles remain unclear. Here we first confirmed that satellite cells from mouse hindlimb muscles express AR. We then generated satellite cell-specific AR knockout mice using <italic>Pax7<sup>CreERT2</sup></italic> and <italic>AR<sup>L2/Y</sup></italic> mice to test whether AR in satellite cells is necessary for muscle regeneration. Surprisingly, we found that muscle regeneration was compromised in both <italic>Pax7<sup>CreERT2(Fan)/+</sup></italic> control mice and <italic>Pax7<sup>CreERT2(Fan)/+</sup>;AR<sup>L2/Y</sup></italic> mice compared to <italic>AR<sup>L2/Y</sup></italic> mice. However, <italic>Pax7<sup>CreERT2(Gaka)/+</sup>;AR<sup>L2/Y</sup>;R26<sup>tdTomato/+</sup></italic> mice showed no significant differences between control and mutant muscle regeneration. These findings indicate that AR in satellite cells is not essential for muscle regeneration. We propose that <italic>Pax7<sup>CreERT2(Fan)/+</sup></italic> control mice should be included in all experiments, because these mice negatively affect the muscle regeneration and show the mild regeneration phenotype.
2019/05 High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations
Molecular Cell, 74(3), 609-621.e6 , Peer-Reviewed , 10.1016/j.molcel.2019.02.0261097-2765, 30922843 https://www.ncbi.nlm.nih.gov/pubmed/30922843 , 64511206 2019/05 High-Dimensional Single-Cell Cartography Reveals Novel Skeletal Muscle-Resident Cell Populations.
Molecular cell, 74(3), 609-621.e6 , Peer-Reviewed , 10.1016/j.molcel.2019.02.0261097-2765 2019/03 Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells
Stem Cell Reports, 12(3), 461-473 , Peer-Reviewed , 10.1016/j.stemcr.2019.01.0072213-6711, 30745033 https://www.ncbi.nlm.nih.gov/pubmed/30745033 , 64511261 2019/02 Combined Notch and PDGF Signaling Enhances Migration and Expression of Stem Cell Markers while Inducing Perivascular Cell Features in Muscle Satellite Cells.
Stem cell reports, 12(3), 461-473 , Peer-Reviewed , 10.1016/j.stemcr.2019.01.0072017/12 Comparison of multiple transcriptomes exposes unified and divergent features of quiescent and activated skeletal muscle stem cells
Skeletal Muscle, 7(1) , Peer-Reviewed , 10.1186/s13395-017-0144-82044-5040, 29273087 https://www.ncbi.nlm.nih.gov/pubmed/29273087 , 64512108 , 概要はこちら(Description) Skeletal muscle satellite (stem) cells are quiescent in adult mice and can undergo multiple rounds of proliferation and self-renewal following muscle injury. Several labs have profiled transcripts of myogenic cells during the developmental and adult myogenesis with the aim of identifying quiescent markers. Here, we focused on the quiescent cell state and generated new transcriptome profiles that include subfractionations of adult satellite cell populations, and an artificially induced prenatal quiescent state, to identify core signatures for quiescent and proliferating.Comparison of available data offered challenges related to the inherent diversity of datasets and biological conditions. We developed a standardized workflow to homogenize the normalization, filtering, and quality control steps for the analysis of gene expression profiles allowing the identification up- and down-regulated genes and the subsequent gene set enrichment analysis. To share the analytical pipeline of this work, we developed Sherpa, an interactive Shiny server that allows multi-scale comparisons for extraction of desired gene sets from the analyzed datasets. This tool is adaptable to cell populations in other contexts and tissues.A multi-scale analysis comprising eight datasets of quiescent satellite cells had 207 and 542 genes commonly up- and down-regulated, respectively. Shared up-regulated gene sets include an over-representation of the TNFα pathway via NFKβ signaling, Il6-Jak-Stat3 signaling, and the apical surface processes, while shared down-regulated gene sets exhibited an over-representation of Myc and E2F targets and genes associated to the G2M checkpoint and oxidative phosphorylation. However, virtually all datasets contained genes that are associated with activation or cell cycle entry, such as the immediate early stress response genes Fos and Jun. An empirical examination of fixed and isolated satellite cells showed that these and other genes were absent in vivo, but activated during procedural isolation of cells.Through the systematic comparison and individual analysis of diverse transcriptomic profiles, we identified genes that were consistently differentially expressed among the different datasets and shared underlying biological processes key to the quiescent cell state. Our findings provide impetus to define and distinguish transcripts associated with true in vivo quiescence from those that are first responding genes due to disruption of the stem cell niche.
2017/05/12 Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity
PLoS ONE, 12(5), e0177516 , Peer-Reviewed , 10.1371/journal.pone.01775161932-6203, 28498863 https://www.ncbi.nlm.nih.gov/pubmed/28498863 , 64512092 , 概要はこちら(Description) Myogenic stem cells are a promising avenue for the treatment of muscular disorders. Freshly isolated muscle stem cells have a remarkable engraftment ability in vivo, but their cell number is limited. Current conventional culture conditions do not allow muscle stem cells to expand in vitro with their bona fide engraftment efficiency, requiring the improvement of culture procedures for achieving successful cell-therapy for muscle disorders. Here we expanded mouse muscle stem cells and human myoblasts with Notch ligands, DLL1, DLL4, and JAG1 to activate Notch signaling in vitro and to investigate whether these cells could retain their engraftment efficiency. Notch signaling promotes the expansion of Pax7+MyoD- mouse muscle stem-like cells and inhibits differentiation even after passage in vitro. Treatment with Notch ligands induced the Notch target genes and generated PAX7+MYOD- stem-like cells from human myoblasts previously cultured on conventional culture plates. However, cells treated with Notch ligands exhibit a stem cell-like state in culture, yet their regenerative ability was less than that of freshly isolated cells in vivo and was comparable to that of the control. These unexpected findings suggest that artificial maintenance of Notch signaling alone is insufficient for improving regenerative capacity of mouse and human donor-muscle cells and suggest that combinatorial events are critical to achieve muscle stem cell and myoblast engraftment potential.
2017/05/02 Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films
Stem Cell Research & Therapy, 8(1) , Peer-Reviewed , 10.1186/s13287-017-0556-81757-6512, 28464938 https://www.ncbi.nlm.nih.gov/pubmed/28464938 , 2017/05 Quiescence of human muscle stem cells is favored by culture on natural biopolymeric films
STEM CELL RESEARCH & THERAPY, 8(1), 104 , Peer-Reviewed , 10.1186/s13287-017-0556-81757-6512 概要はこちら(Description) Background
2017/03/01 Isolation of Muscle Stem Cells from Mouse Skeletal Muscle
Methods in Molecular Biology, 23-39 , Peer-Reviewed , 10.1007/978-1-4939-6771-1_21064-3745, 28247343 https://www.ncbi.nlm.nih.gov/pubmed/28247343 , 64512401 2017/03 Isolation of Muscle Stem Cells from Mouse Skeletal Muscle.
Methods in molecular biology (Clifton, N.J.), 1556, 23-39 , Peer-Reviewed , 10.1007/978-1-4939-6771-1_21064-3745 2017/03 Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle. / Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle
Cell stem cell, 20(3), 407-+ , Peer-Reviewed , 10.1016/j.stem.2016.11.0201934-5909 概要はこちら(Description) In vivo reprogramming is a promising approach for tissue regeneration in response to injury. Several examples of in vivo reprogramming have been reported in a variety of lineages, but some including skeletal muscle have so far proven refractory. Here, we show that acute and chronic injury enables transcription-factor-mediated reprogramming in skeletal muscle. Lineage tracing indicates that this response frequently originates from Pax7+ muscle stem cells. Injury is associated with accumulation of senescent cells, and advanced aging or local irradiation further enhanced in vivo reprogramming, while selective elimination of senescent cells reduced reprogramming efficiency. The effect of senescence appears to be, at least in part, due to the release of interleukin 6 (IL-6), suggesting a potential link with the senescence-associated secretory phenotype. Collectively, our findings highlight a beneficial paracrine effect of injury-induced senescence on cellular plasticity, which will be important for devising strategies for reprogramming-based tissue repair.
2017/03 Injury-Induced Senescence Enables In Vivo Reprogramming in Skeletal Muscle
Cell Stem Cell, 20(3), 407-414.e4 , Peer-Reviewed , 10.1016/j.stem.2016.11.0201934-5909, 28017795 https://www.ncbi.nlm.nih.gov/pubmed/28017795 , 2015/07 Chromatin signatures at Notch-regulated enhancers reveal large-scale changes in H3K56ac upon activation
EMBO JOURNAL, 34(14), 1889-1904 , Peer-Reviewed , 10.15252/embj.2014899230261-4189 概要はこちら(Description) The conserved Notch pathway functions in diverse developmental and disease-related processes, requiring mechanisms to ensure appropriate target selection and gene activation in each context. To investigate the influence of chromatin organisation and dynamics on the response to Notch signalling, we partitioned Drosophila chromatin using histone modifications and established the preferred chromatin conditions for binding of Su(H), the Notch pathway transcription factor. By manipulating activity of a co-operating factor, Lozenge/Runx, we showed that it can help facilitate these conditions. While many histone modifications were unchanged by Su(H) binding or Notch activation, we detected rapid changes in acetylation of H3K56 at Notch-regulated enhancers. This modification extended over large regions, required the histone acetyl-transferase CBP and was independent of transcription. Such rapid changes in H3K56 acetylation appear to be a conserved indicator of enhancer activation as they also occurred at the mammalian Notch-regulated Hey1 gene and at Drosophila ecdysone-regulated genes. This intriguing example of a core histone modification increasing over short timescales may therefore underpin changes in chromatin accessibility needed to promote transcription following signalling activation.
2015/06/11 Chromatin signatures at Notch‐regulated enhancers reveal large‐scale changes in H3K56ac upon activation
The EMBO Journal, 34(14), 1889-1904 , Peer-Reviewed , 10.15252/embj.2014899230261-4189, 26069324 https://www.ncbi.nlm.nih.gov/pubmed/26069324 , 2015/02 Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration
Mechanisms of Development, 135, 58-67 , Peer-Reviewed , 10.1016/j.mod.2014.12.0010925-4773, 25511460 https://www.ncbi.nlm.nih.gov/pubmed/25511460 , 2015/02 Roles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration
MECHANISMS OF DEVELOPMENT, 135, 58-67 , Peer-Reviewed , 10.1016/j.mod.2014.12.0010925-4773 概要はこちら(Description) Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegrin and metalloprotease (ADAM) family. Skeletal muscle of dystrophin-null mice, an animal model for Duchenne Muscular Dystrophy, deteriorates by the lack of ADAM8, which is characterized by increased area of muscle degeneration and increased number of necrotic and calcified muscle fibers. Adam8 is highly expressed in neutrophils. Upon cardiotoxin-induced skeletal muscle injury, neutrophils invade into muscle fibers through the basement membrane and form large clusters in wild type, but not in ADAM8-deficient mice, although neutrophils of the latter infiltrate into interstitial tissues similarly to those of wild type mice. Neutrophils lose their adhesiveness to blood vessels after infiltration, which includes an ectodomain shedding of P-Selectin Glycoprotein Ligand-1 (PSGL-1) on their surface. Expression of PSGL-1 on the surface of neutrophils remains higher in ADAM8-deficient than in wild type mice. These results suggest that ADAM8 mediates an enhanced invasiveness of neutrophils into injured muscle fibers by the removal of their adhesiveness to blood vessels after infiltration into interstitial tissues. (C) 2014 The Authors. Published by Elsevier Ireland
2013/05/09 Fetal Skeletal Muscle Progenitors Have Regenerative Capacity after Intramuscular Engraftment in Dystrophin Deficient Mice
PLoS ONE, 8(5), e63016 , Peer-Reviewed , 10.1371/journal.pone.00630161932-6203, 120005245143, 23671652 http://ci.nii.ac.jp/naid/120005245143 , 64511572 2012/10/24 In Vitro Modeling of Paraxial Mesodermal Progenitors Derived from Induced Pluripotent Stem Cells
PLoS ONE, 7(10), e47078 , Peer-Reviewed , 10.1371/journal.pone.00470781932-6203, 23115636 https://www.ncbi.nlm.nih.gov/pubmed/23115636 , 2012/10 In Vitro Modeling of Paraxial Mesodermal Progenitors Derived from Induced Pluripotent Stem Cells
PLOS ONE, 7(10), e47078 , Peer-Reviewed , 10.1371/journal.pone.00470781932-6203 概要はこちら(Description) Induced pluripotent stem (iPS) cells are generated from adult somatic cells by transduction of defined factors. Given their unlimited proliferation and differentiation potential, iPS cells represent promising sources for cell therapy and tools for research and drug discovery. However, systems for the directional differentiation of iPS cells toward paraxial mesodermal lineages have not been reported. In the present study, we established a protocol for the differentiation of mouse iPS cells into paraxial mesodermal lineages in serum-free culture. The protocol was dependent on Activin signaling in addition to BMP and Wnt signaling which were previously shown to be effective for mouse ES cell differentiation. Independently of the cell origin, the number of transgenes, or the type of vectors used to generate iPS cells, the use of serum-free monolayer culture stimulated with a combination of BMP4, Activin A, and LiCl enabled preferential promotion of mouse iPS cells to a PDGFR-alpha(+)/Flk-1(-) population, which represents a paraxial mesodermal lineage. The mouse iPS cell-derived paraxial mesodermal cells exhibited differentiation potential into osteogenic, chondrogenic, and myogenic cells both in vitro and in vivo and contributed to muscle regeneration. Moreover, purification of the PDGFR-alpha(+)/KDR- population after differentiation allowed enrichment of human iPS cell populations with paraxial mesodermal characteristics. The resultant PDGFR-alpha(+)/KDR- population derived from human iPS cells specifically exhibited osteogenic, chondrogenic, and myogenic differentiation potential in vitro, implying generation of paraxial mesodermal progenitors similar to mouse iPS cell-derived progenitors. These findings highlight the potential of protocols based on the serum-free, stepwise induction and purification of paraxial mesodermal cell lineages for use in stem cell therapies to treat diseased bone, cartilage, and muscle.
- 講演・口頭発表等(Lecture/Oral Presentation)
-
2025/07/24-2025/07/26 男性ホルモンによる骨格筋制御 / Mechanisms of Androgen Action in Skeletal Muscle, 酒井 大史 / Hiroshi Sakai, 第43回日本骨代謝学会学術集会 / The 43rd Annual Meeting of the Japanese Society for Bone and Mineral Research , invited 熊本 / Kumamoto 概要はこちら(Description) 我が国をはじめとする先進諸国では、人口の高齢化が進行しており、今後さらに高齢化率が上昇すると予測されている。高齢者における Quality of Life(QOL)が著しく低下する主な要因の一つとして、サルコペニア(加齢性筋肉減少症)を含む骨格筋の筋力および筋量の低下が挙げられる。そのため、正常な筋力と筋量を維持することは、健康寿命の延伸において極めて重要である。男性ホルモンであるアンドロゲン(androgen)は、その投与により筋力や筋量を増強する効果が知られている。この作用は、アンドロゲンがアンドロゲン受容体(androgen receptor, AR)に結合することで発揮されるため、骨格筋における AR の機能を解析することは、アンドロゲンが骨格筋を制御する仕組みを理解する上で不可欠である。これまでの我々の研究において、骨格筋を構成する三種類の細胞、すなわち実質細胞である骨格筋細胞、成体幹細胞である筋衛星細胞、および間質に存在する間葉系前駆細胞が、それぞれ AR を発現していることを明らかにした。また、骨格筋細胞特異的に AR 遺伝子を欠損したマウスを用いて、骨格筋幹細胞の AR は、骨格筋再生への関与は限定的であることを示した。さらに、間葉系前駆細胞における AR が、骨格筋の量を調整するタンパク質であるインスリン様成長因子(IGF1)の発現を調整することで、骨格筋量を制御していることを示した。加えて、骨格筋細胞における ARの標的遺伝子を網羅的に同定し、骨格筋の雌雄差を生み出す遺伝子を見出している。以上のように、アンドロゲンの作用は、それを受容する AR を発現する細胞によって大きく異なることを解明してきた。今後、本研究を起点として、細胞特異的な AR による作用機序の詳細を解明し、その作用機序に則した標的細胞の同定と、標的分子・創薬標的の構築が期待される。
2025/03/18 男性ホルモンによる骨格筋制御 / Mechanisms of Androgen Action in Skeletal Muscle, 酒井 大史 / Hiroshi Sakai, PROS・PRiME第12回学術シンポジウム / PROS-PRiME 12th Academic Symposium , invited 松山 / Matsuyama 2025/03/07-2025/03/09 男性ホルモンによる⾻格筋制御, 酒井 大史, 第11回⾻格筋⽣物学研究会 広島 2024/12/16-2024/12/17 若手研究者から見た「評価」, 酒井 大史, フォーラム『若手研究者の育成に資する評価は、どうあるべきか考える』 , invited 広島 概要はこちら(Description) 「評価」とは、「事物や個人、組織の価値判断を行うこと」である。しかし、日本語の「評価」に相当する英語は、その目的、場面、対象によって多岐にわたる[1]「評価」という言葉は,文脈によって、また、それを使う人/受け取る人によって、異なった意味でありえる。 現在、日本では、科学技術や学術の分野において、大学等の機関評価,研究開発プロジェクトの評価、研究課題の評価、大学教員の個人評価、等々、様々な「評価」が実施されている。「評価疲れ」の指摘も聞かれる。「評価」は、何らかの目的(資源配分の決定、進捗度の点検、等)があって実施される手段である。そのため、「評価」を実施する際には、その目的を明確にした上で、それを適切に達成するための「評価システム」が個別に構築される。 本フォーラムでは、「若手研究者の評価」に焦点をあてる。「研究者の評価」の場合、その「評価」の目的の中に、評価によって「被評価者の研究意欲が高まること」が含まれるべきである。「若手研究者」の場合は、なおさら、である。広島大学や島根大学で展開中の事業から得られた知見・経験を踏まえて、国内外の現状調査をふまえつつ、「若手研究者の育成」に資する「評価」とはどうあるべきかを考える。
2024/11/20-2024/11/21 間葉系前駆細胞におけるアンドロゲン受容体は、雄マウスにおいてIgf1発現を介して骨格筋量を制御する / The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice, 酒井 大史, 宇野 英章, 山川 陽美, 田中 かおり, 池戸 葵, 上住 聡芳, 大川 恭行, 今井 祐記 / Hiroshi Sakaia, Hideaki Unob, Harumi Yamakawab, Kaori Tanakac, Aoi Ikedoa, Akiyoshi Uezumid, Yasuyuki Ohkawac, Yuuki Imaia, 第9回若手による骨格筋細胞研究会 / The 9th Society of Skeletal Muscle Cells for Young Scientists 福岡 / Fukuoka 概要はこちら(Description) アンドロゲンは、リガンド依存性核内受容体であるアンドロゲン受容体(AR)に結合する ことにより、その作用の大部分を発揮する。アンドロゲンは骨格筋に対して同化作用を持 つが、以前の研究では、骨格筋細胞の AR は、骨格筋の筋量よりも、骨格筋の質を調節す ると報告されている。したがって、アンドロゲンの骨格筋の量への作用は、骨格筋細胞以 外の細胞を介して発揮されることになる。このような背景から、骨格筋の恒常性維持に重 要な役割を果たす間葉系前駆細胞における AR の細胞的および分子的メカニズムは、ほと んど未知のままである。本研究では、間葉系前駆細胞における AR の発現を証明し、間葉 系前駆細胞において AR を欠損させると、成熟成体マウスの四肢筋量が減少することを見 出した。間葉系前駆細胞における AR の欠損は、細胞死や細胞外マトリックスの構成に関 連する転写産物の異常な制御により、年齢に関係なく、顕著な会陰筋の筋萎縮を引き起こ した。さらに、間葉系前駆細胞における AR が、インスリン様成長因子 1(IGF1)の発現を 制御すること、および IGF1 の投与が、パラクリン様式で会陰筋の萎縮を防ぐことを明らか にした。これらの知見は、アンドロゲンの同化作用が、少なくとも部分的には間葉系前駆 細胞における AR シグナル伝達を介して骨格筋量を調節していることを示している。
2024/11/15 The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice, Hiroshi Sakai, Hideaki Uno, Harumi Yamakawa, Kaori Tanaka, Aoi Ikedo, Akiyoshi Uezumi, Yasuyuki Ohkawa, Yuuki Imai, The 22st Protein Island Matsuyama International Symposium (PIM2024) Matsuyama 2024/09/12-2024/09/15 The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice, Hiroshi Sakai, Hideaki Uno, Harumi Yamakawa, Kaori Tanaka, Aoi Ikedo, Akiyoshi Uezumi, Yasuyuki Ohkawa, Yuuki Imai, AOMC-JMS 2024 Nara 2024/06/01-2024/06/04 INVESTIGATION OF NUTRITIONAL THERAPY TO IMPROVE SEPSIS-INDUCED SKELETAL MUSCLE WEAKNESS, Mari Saida, Noritaka Saeki, Hiroshi Sakai, Norio Sato, Yuuki Imai, The 47th Annual Conference On Shock Florida 2024/05/11-2024/05/12 雄マウスでの間葉系前駆細胞のアンドロゲン受容体による、 Igf1発現 を介した骨格筋量の制御 / The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice, 酒井大史 / Hiroshi Sakai, 筋・骨・リウマチ 3 学会合同若手研究会 東京 / Tokyo 概要はこちら(Description) 【目的】アンドロゲンは、核内受容体であるアンドロゲン受容体 (androgen receptor, AR) と結合し、転写因子として働くことで、そのほとんどの機能を発揮する。しかしながら、定常状態の骨格筋組織維持に必須である間葉系前駆細胞におけるARを介する機能については、明らかにできていない。本研究の目的は、骨格筋間葉系前駆細胞でのアンドロゲン標的遺伝子を同定し、その機能から骨格筋組織でのアンドロゲン作用の分子メカニズムを明らかにすることである。【方法】間葉系前駆細胞特異的にARを欠損させる遺伝子改変マウスを作成し、RNA-seqならびにCUT&RUNにより、ARの機能ならびにその標的遺伝子を探索した。【結果】間葉系前駆細胞特異的AR欠損オスマウスにおいて、四肢の筋肉量が減少することを見出した。さらにRNA-seqの結果から、間葉系前駆細胞におけるARの欠損は、アポトーシスとタンパク質分解に関連する転写産物の異常制御を引き起こすことを見出した。加えて、CUT&RUNの結果から、間葉系前駆細胞におけるARは、インスリン様成長因子1の発現を制御することを明らかにした。【結論】これらの結果は、間葉系前駆細胞に発現するARによって制御されるIGF1を介して、骨格筋量を調節していることを示唆している。
2024/03/28-2024/03/30 エクソン接合部複合体周辺因子Acin1の骨格筋線維特異的KOマウスの解析 / Analysis of skeletal muscle fiber-specific KO mice for Acin1, a peripheral factor of exon junction complex, 青戸守, 酒井大史, 徳永順士, 宮崎芽依, 今井祐記, 満田憲昭, 第101回日本生理学会大会 福岡 2024/03/08-2024/03/10 The androgen receptor in myofibers regulates contraction-related genes in skeletal muscle / The androgen receptor in myofibers regulates contraction-related genes in skeletal muscle, 酒井 大史 / Hiroshi Sakai, 第10回骨格筋生物学研究会 札幌 / Sapporo 概要はこちら(Description) アンドロゲンは、核内受容体であるアンドロゲン受容体 (androgen receptor, AR) と結合し、転写因子として働くことで、そのほとんどの機能を発揮する。しかしながら、定常状態の骨格筋組織維持に必須である間葉系前駆細胞におけるARを介する機能については、明らかにできていない。本研究の目的は、骨格筋間葉系前駆細胞でのアンドロゲン標的遺伝子を同定し、その機能から骨格筋組織でのアンドロゲン作用の分子メカニズムを明らかにすることである。間葉系前駆細胞特異的にARを欠損させる遺伝子改変マウスを作成し、RNA-seqならびにCUT&RUNにより、ARの機能ならびにその標的遺伝子を探索した。間葉系前駆細胞特異的AR欠損オスマウスにおいて、四肢の筋肉量が減少することを見出した。さらにRNA-seqの結果から、間葉系前駆細胞におけるARの欠損は、アポトーシスとタンパク質分解に関連する転写産物の異常制御を引き起こすことを見出した。加えて、CUT&RUNの結果から、間葉系前駆細胞におけるARは、インスリン様成長因子1の発現を制御することを明らかにした。これらの結果は、間葉系前駆細胞に発現するARによって制御されるIGF1を介して、骨格筋量を調節していることを示唆している。
2024/02/22-2024/02/23 雄マウスでの間葉系前駆細胞のアンドロゲン受容体による、Igf1発現を介した骨格筋量の制御 / The androgen receptor in mesenchymal progenitors regulates skeletal muscle mass via Igf1 expression in male mice., 酒井 大史 / Hiroshi Sakai, 第8回若手による骨格筋細胞研究会 / The 8th Annual Meeting of the Society of Skeletal Muscle Cells for Young Scientists 東京 / Tokyo 概要はこちら(Description) Androgens exert their effects primarily by binding to the androgen receptor (AR), a ligand-dependent nuclear receptor. While androgens have anabolic effects on skeletal muscle, previous studies reported that AR functions in myofibers to regulate skeletal muscle quality, rather than skeletal muscle mass. Therefore, the anabolic effects of androgens are exerted via extra-myofiber cells or tissues. In this context, the cellular and molecular mechanisms of AR in mesenchymal progenitors, which play a crucial role in maintaining skeletal muscle homeostasis, remain largely unknown. In this study, we demonstrated expression of AR in mesenchymal progenitors and found that targeted AR ablation in mesenchymal progenitors reduced limb muscle mass in mature adult, but not young or aged, male mice, although fatty infiltration of muscle was not affected. The absence of AR in mesenchymal progenitors led to remarkable perineal muscle hypotrophy, regardless of age, due to abnormal regulation of transcripts associated with apoptosis and proteolysis. Additionally, we revealed that AR in mesenchymal progenitors regulates the expression of insulin-like growth factor 1, which can increase skeletal muscle mass in a paracrine manner. These findings indicate that the anabolic effects of androgens indirectly regulate skeletal muscle mass via, at least in part, AR signaling in mesenchymal progenitors.
2023/09/13 Androgen receptor in mesenchymal progenitors is important for skeletal muscles in adult male mice. / Androgen receptor in mesenchymal progenitors is important for skeletal muscles in adult male mice., Hiroshi Sakai, Hideaki Uno, Harumi Yamakawa, Kaori Tanaka, Aoi Ikedo, Akiyoshi Uezumi, Yasuyuki Ohkawa, Yuuki Imai / Hiroshi Sakai, Hideaki Uno, Harumi Yamakawa, Kaori Tanaka, Aoi Ikedo, Akiyoshi Uezumi, Yasuyuki Ohkawa, Yuuki Imai, 第21回松山国際学術シンポジウム(プロテイン・アイランド・松山2023) / The 21st Protein Island Matsuyama International Symposium (PIM2023) 愛媛 / Ehime 2023/08/18-2023/08/19 アンドロゲン受容体による骨格筋制御機構 / Androgen action on skeletal muscle, 酒井大史 / Hiroshi Sakai, 第9回日本筋学会学術集会 / The 9th Annual Meeting of Japan Muscle Society 大阪 / Osaka 概要はこちら(Description) 我が国をはじめ、先進諸国では高齢化が進行し、今後、更に高齢化率が進むと推測されている。高齢者における生活の質が著しく低下する原因の一つは、サルコペニア(加齢性筋肉減少症)を含む、骨格筋量ならびに筋力の低下である。そのため、正常な筋量・筋力を維持することは、健康寿命延伸にとって極めて重要である。男性ホルモン(アンドロゲン)の投与は筋力を増強させ、筋萎縮の治療法となり得る。しかしながら、心血管イベントとそれに関連する突然死が、深刻な副作用として報告されている。そのため、アンドロゲン補充療法を実現化させるためには、アンドロゲンの骨格筋への作用と心血管への作用を切り離す必要がある。 アンドロゲンは、核内受容体であるアンドロゲン受容体(androgen receptor, AR)と結合し、転写因子としてその機能を発揮する。我々は、骨格筋におけるARのゲノム結合領域を網羅的に同定した。また、これまで発表してきたRNA-seqデータを再解析し、同定されたARの標的候補遺伝子のうち、アンドロゲン依存的かつ骨格筋細胞のAR依存的に、発現が制御される遺伝子を探索した。さらに、シングルセルRNA-seqデータを再解析することで、骨格筋細胞に特異的に発現し、心筋細胞には発現していないAR標的候補遺伝子を同定した。この候補遺伝子の発現を制御することは、アンドロゲンの心血管イベントへの副作用を回避し、骨格筋特異的に作用を及ぼす新たな創薬のターゲットとなり得る。
2023/08 アンドロゲンによる骨格筋量の制御メカニズムの解明, 大西 智也, 酒井 大史, 上住 聡芳, 菊川 忠彦, 雑賀 隆史, 今井 祐記, 第9回日本筋学会学術集会 2023/05/01-2023/05/02 Androgen action on skeletal muscle, Hiroshi Sakai, 1st Symposium on "Skeletal muscle cells in Growth and Disease" , invited Osaka 2023/03/03-2023/03/05 男性ホルモンによる骨格筋制御 / Androgens and Skeletal Muscle, 酒井大史 / Hiroshi Sakai, 第9回骨格筋生物学研究会 / The 9th Meeting of Skeletal Muscle Biology 湘南 / Shonan 2023/02/20-2023/02/21 Androgens and Skeletal Muscle, Hiroshi Sakai, HIRAKU-Global International Symposium/Annual Conference FY2022 , invited Online 2022/09/16 Androgen receptor in mesenchymal progenitors of skeletal muscle. / Androgen receptor in mesenchymal progenitors of skeletal muscle., Hiroshi Sakai, Yuuki Imai / Hiroshi Sakai, Yuuki Imai, 第20回松山国際学術シンポジウム(プロテイン・アイランド・松山2022) / The 20th Protein Island Matsuyama International Symposium (PIM2022) 松山 / Matsuyama 2022/08/05-2022/08/06 骨格筋間葉系前駆細胞におけるアンドロゲン受容体の解析 / Androgen receptor in mesenchymal progenitors of skeletal muscle., 酒井大史 / Hiroshi Sakai, 第8回日本筋学会学術集会 / The 8th Annual Meeting of Japan Muscle Society 東京 / Tokyo 概要はこちら(Description) 男性ホルモン(アンドロゲン)の投与によって、骨格筋が肥大することは良く知ら れているが、アンドロゲンの骨格筋に対する分子生物学的作用機序は、ほとんど解 明されていない。本研究の目的は、間葉系前駆細胞特異的に、アンドロゲン受容 体を欠損させたマウスを作出し、その表現型を解析することで、骨格筋組織でのア ンドロゲン作用の分子メカニズムを明らかにすることである。間葉系前駆細胞特異 的にタモキシフェン誘導型のCreを発現するマウス(PDGFRα-CreER)と、AR flox マウス(ARL2/+)との交配により、 間葉系前駆細胞特異的AR欠損マウス(PDGFRα -CreER; ARL2/+)を作出した。コントロールマウスと比較して、変異マウスでは、筋 力の低下が見られた。また、種々の骨格筋(上腕二頭筋、前脛骨筋、腓腹筋、ヒラメ 筋)では、筋重量において減少傾向にあった。骨格筋間葉系前駆細胞に発現するARは、 その発現ならびに標的遺伝子を通して、骨格筋量あるいは筋力を制御している可能 性がある。
2022/02/21 Androgens and Skeletal muscles, Hiroshi Sakai, HIRAKU-Global Annual Conference FY2021 , invited Online 2022 アンドロゲンによる間接的な骨格筋量の制御メカニズムの解明, 大西智也, 酒井大史, 菊川忠彦, 雑賀隆史, 今井祐記, 第8回日本筋学会学術集会 東京 2022 アンドロゲンによる間接的な骨格筋量制御メカニズムの解明, 大西智也, 酒井大史, 菊川忠彦, 東山繁樹, 雑賀隆史, 今井祐記, 日本病態プロテアーゼ学会学術集会プログラム抄録集 2021/12/11-2021/12/12 Uhrf1 governs the proliferation and differentiation of muscle satellite cells / Uhrf1 governs the proliferation and differentiation of muscle satellite cells, Hiroshi Sakai, Yuichiro Sawada, Naohito Tokunaga, Kaori Tanaka, So Nakagawa, Iori Sakakibara, Yusuke Ono, So-ichiro Fukada, Yasuyuki Ohkawa, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai / Hiroshi Sakai, Yuichiro Sawada, Naohito Tokunaga, Kaori Tanaka, So Nakagawa, Iori Sakakibara, Yusuke Ono, So-ichiro Fukada, Yasuyuki Ohkawa, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai, 第7回日本筋学会学術集会 / The 7th Annual Meeting of Japan Muscle Society 京都 / Kyoto 概要はこちら(Description) DNA methylation is an essential form of epigenetic regulation responsible for cellular identity. In muscle satellite cells, DNA methylation patterns are tightly regulated during differentiation. However, it is unclear how these DNA methylation patterns are maintained. We demonstrate that ubiquitin like with PHD and RING finger domains 1 (Uhrf1) is activated in proliferating myogenic cells. Ablation of Uhrf1 in satellite cells impairs their proliferation and differentiation, leading to failed muscle regeneration. Uhrf1-deficient satellite cells exhibited dramatic changes in genome-wide DNA methylation profiles and transcript levels. These findings point to Uhrf1 as a regulator of self-renewal and differentiation of satellite cells via genome-wide DNA methylation patterning.
2021/09/17-2021/09/19 骨格筋間葉系前駆細胞におけるアンドロゲン受容体の解析 / Analysis of androgen receptors in skeletal muscle mesenchymal progenitor cells, 酒井 大史, 今井 祐記 / Hiroshi Sakai, Yuuki Imai, 第76回日本体力医学会大会 / The 76th Japanese Society of Physical Fitness and Sports Medicine オンライン / Online 概要はこちら(Description) 【背景】男性ホルモン(アンドロゲン)の投与によって、骨格筋が肥大することは良く知られているが、アンドロゲンの骨格筋に対する分子生物学的作用機序は、ほとんど解明されていない。【目的】本研究の目的は、間葉系前駆細胞特異的に、アンドロゲン受容体を欠損させたマウスを作出し、その表現型を解析することで、骨格筋組織でのアンドロゲン作用の分子メカニズムを明らかにすることである。【方法】間葉系前駆細胞特異的にタモキシフェン誘導型のCreを発現するマウス(<I>PDGFRα-CreER</I>)と、AR floxマウス(<I>AR<SUP>L2/+</SUP></I>)との交配により、間葉系前駆細胞特異的AR欠損マウス(<I>PDGFRα-CreER; AR<SUP>L2/+</SUP></I>)を作出した。【結果】コントロールマウスと比較して、変異マウスでは、筋力の低下が見られた。また、種々の骨格筋(上腕二頭筋、前脛骨筋、腓腹筋、ヒラメ筋)では、筋重量において減少傾向にあった。【考察】骨格筋間葉系前駆細胞に発現するARは、その発現ならびに標的遺伝子を通して、骨格筋量あるいは筋力を制御している可能性がある。【結論】AR陽性の骨格筋間葉系前駆細胞は、骨格筋制御に関与している。
2021/09/07-2021/09/08 Uhrf1 governs the proliferation and differentiation of muscle satellite cells / Uhrf1 governs the proliferation and differentiation of muscle satellite cells, Hiroshi Sakai, Yuichiro Sawada, Naohito Tokunaga, So Nakagawa, Iori Sakakibara, Yusuke Ono, So-ichiro Fukada, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai / Hiroshi Sakai, Yuichiro Sawada, Naohito Tokunaga, So Nakagawa, Iori Sakakibara, Yusuke Ono, So-ichiro Fukada, Tadahiko Kikugawa, Takashi Saika, Yuuki Imai, 第19回松山国際学術シンポジウム(プロテイン・アイランド・松山2021) / The 19th Protein Island Matsuyama International Symposium (PIM2021) 2021/07/03 Androgen receptor in satellite cells is not essential for muscle regeneration / Androgen receptor in satellite cells is not essential for muscle regeneration, 酒井大史 / Hiroshi Sakai, Japan XR Science Forum 2021 in Paris / Japan XR Science Forum 2021 in Paris 2021/03/19 若手研究者による3分間ピッチ / 3 Minute Visionary Pitch, 酒井大史 / Hiroshi Sakai, HIRAKU-Global国際シンポジウム / HIRAKU-Global International Symposium , invited 2021/03/05-2021/03/07 Uhrf1 is essential for satellite cell function during muscle regeneration / Uhrf1 is essential for satellite cell function during muscle regeneration, 酒井 大史, 第8回骨格筋生物学研究会 概要はこちら(Description) DNA methylation is an essential form of epigenetic regulation responsible for cellular identity. In muscle satellite cells, DNA methylation patterns are tightly regulated during differentiation. However, it is unclear how these DNA methylation patterns are maintained. We demonstrate that ubiquitin like with PHD and RING finger domains 1 (Uhrf1) is activated in proliferating myogenic cells. Ablation of Uhrf1 in satellite cells impairs their proliferation and differentiation, leading to failed muscle regeneration. Uhrf1-deficient satellite cells exhibited dramatic changes in genome-wide DNA methylation profiles and transcript levels. These findings point to Uhrf1 as a regulator of self-renewal and differentiation of satellite cells via genome-wide DNA methylation patterning.
2020/12/18-2020/12/20 Androgen receptor in satellite cells is not essential for muscle regenerations / Androgen receptor in satellite cells is not essential for muscle regenerations, Hiroshi Sakai, Takahiko Sato, Motoi Kanagawa, So-ichiro Fukada, Yuuki Imai / Hiroshi Sakai, Takahiko Sato, Motoi Kanagawa, So-ichiro Fukada, Yuuki Imai, 第6回日本筋学会学術集会 / The 6th Annual Meeting of Japan Muscle Society 2019/12/03-2019/12/06 骨格筋幹細胞特異的にアンドロゲン受容体を欠損したマウスでの骨格筋再生 / Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice, 酒井 大史, 今井祐記 / Hiroshi SAKAI, Yuuki IMAI, 第42回日本分子生物学会年会 / The 42nd Annual Meeting of The Molecular Biology Society of Japan , invited 福岡 / Fukuoka 概要はこちら(Description) 我が国を筆頭に先進諸国では高齢化が進行し、今後も高齢化率が上昇するのは統計的事実であ る(平成29年版高齢社会白書)。高齢者におけるQuality of lifeが著しく低下する主な原因の 一つは、加齢による骨格筋量の低下、すなわちサルコペニアである。現在、明確なサルコペニ アの治療法は存在しておらず、その開発が期待されている。骨格筋の増強に作用する分子の中 でも、男性ホルモン(アンドロゲン)の投与によって、筋肉が増強されることは古くから知ら れており、アンドロゲン補充治療は、サルコペニアの治療法となり得ると考えられ、欧米では 臨床応用されている。しかし、驚くべきことに、実際にヒトに投与されているのにもかかわら ず、アンドロゲンの骨格筋に対する分子生物学的作用機序は、ほとんど解明されていない。 我々は、マウス後肢の骨格筋幹細胞においてアンドロゲン受容体(androgen receptor, AR)が 発現していることを見出した。そこで、骨格筋再生において、骨格筋幹細胞におけるARの発現 が重要であるかを確かめるため、骨格筋幹細胞特異的にアンドロゲン受容体を欠損したマウス (Pax7CE/+;ARL2/Y)を作出した。驚くべきことに、骨格筋幹細胞のマーカであるPax7の発 現変動が、Pax7CE/+;ARL2/Yマウスだけでなく、コントロールマウスであるPax7CE/+マウ スでも観察された。この結果は、Pax7CE/+マウスは骨格筋幹細胞に表現系があることを示 し、Pax7CE/+マウスをコントロールとして必ず加えるべきである。
2019/10/22-2019/10/23 Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice / Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice, 酒井 大史 / Hiroshi Sakai, Takahiko Sato, Yuuki Imai, 第7回若手による骨格筋細胞研究会 / The 7th Annual Meeting of the Society of Skeletal Muscle Cells for Young Scientists 概要はこちら(Description) アンドロゲンの骨格筋に対するアナボリック効果は、アンドロゲン受容体(AR)を介して調整されていると考えられている。しかし、驚くべきことに、実際にヒトに投与されているのにもかかわらず、アンドロゲンの骨格筋に対する分子生物学的作用機序は、ほとんど解明されていない。我々は、ARが骨格筋幹細胞に発現していることを見出した。そこで、骨格筋幹細胞のARが骨格筋再生に必要かを確かめるため、骨格筋幹細胞特異的にARをノックアウトできるマウス(Pax7CE/+;ARL2/YあるいはPax7CreERT2/+;ARL2/Y;R26tdTomato/+)を作出した。驚くべきことに、Pax7CE/+;ARL2/Yマウスと同様に、コントロールマウスであるPax7CE/+マウスにおいても、骨格筋再生時にPax7の発現細胞数が減少した。一方、Pax7CreERT2/+;ARL2/Y;R26tdTomato/+マウスでは、コントロールマウスとミュータントマウスにおいて、骨格筋再生時におけるPax7陽性細胞数に差は見られなかった。以上の結果は、Pax7CE/+マウスは骨格筋幹細胞に表現系を有するため、Pax7CE/+マウスをもちいて適切にコントロールを取るべきであることを示唆する。また、骨格筋幹細胞のARは、再生に寄与していない可能性がある。
2019/09/10-2019/09/11 Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice / Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice, Hiroshi Sakai, Yuuki Imai / Hiroshi Sakai, Yuuki Imai, 第17回松山国際学術シンポジウム(プロテイン・アイランド・松山2019) / The 17th Protein Island Matsuyama International Symposium (PIM2019) 2019/08/02-2019/08/03 Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice / Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice, 酒井 大史, 今井 祐記, 日本筋学会第5回学術集会 / The 5th Annual Meeting of Japan Muscle Society 2019/08 骨格筋におけるDNA維持メチル化酵素Dnmt1の機能解析, 飯尾 浩之, 沢田 雄一郎, 酒井 大史, 柳原 裕太, 佐伯 法学, 菊川 忠彦, 雑賀 隆史, 今井 祐記, 日本筋学会学術集会プログラム・抄録集 日本筋学会 2019/03/01-2019/03/03 骨格筋幹細胞特異的アンドロゲン受容体欠損マウスの骨格筋再生 / Muscle regeneration in a muscle stem cell-specific androgen receptor-knockout mice, 酒井大史 / Hiroshi Sakai, Yuuki Imai, 第7回骨格筋生物学研究会 2018/11/12-2018/11/13 アンドロゲンによる筋制御メカニズム / Regulatory mechanisms underlying androgenic anabolic effects for skeletal muscle, 榊原伊織, 沢田雄一, 柳原裕太, 佐伯法学, 酒井大史, 今井祐記 / Iori Sakakibara, Yuichiro Sawada, Yuta Yanagihara, Noritaka Saeki, Hiroshi Sakai, Yuuki Imai, 第6回若手による骨格筋細胞研究会 大阪 2018/11/12-2018/11/13 エピゲノム制御因子 Uhrf1 は筋分化を正に制御する / Epigenetic regulator, Uhrf1, positively controls skeletal muscle differentiation, 沢田雄一郎, 菊川忠彦, 飯尾浩之, 酒井大史, 榊原伊織, 小野悠介, 柳原裕太, 佐伯法学, 雑賀隆史, 今井祐記 / Yuichiro Sawada, Tadahiko Kikugawa, Hiroyuki Iio, Hiroshi Sakai, Iori Sakakibara, Yusuke Ono, Yuta Yanagihara, Noritaka Saeki, Takashi Saika, Yuuki Imai, 第6回若手による骨格筋細胞研究会 2018/08/10-2018/08/11 Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity / Notch ligands regulate the muscle stem-like state ex vivo but are not sufficient for retaining regenerative capacity, Hiroshi Sakai, Sumiaki Fukuda, Miki Nakamura, Akiyoshi Uezumi, Yu-taro Noguchi, Takahiko Sato, Mitsuhiro Morita, Harumoto Yamada, Kunihiro Tsuchida, Shahragim Tajbakhsh, So-ichiro Fukada / Hiroshi Sakai, Sumiaki Fukuda, Miki Nakamura, Akiyoshi Uezumi, Yu-taro Noguchi, Takahiko Sato, Mitsuhiro Morita, Harumoto Yamada, Kunihiro Tsuchida, Shahragim Tajbakhsh, So-ichiro Fukada, 日本筋学会第4回学術集会 2017/01/23-2017/01/25 Investigating the role of Notch-Delta signalling in murine and human muscle stem cells / Investigating the role of Notch-Delta signalling in murine and human muscle stem cells, Hiroshi Sakai, Sumiaki Fukuda, So-ichiro Fukada, Shahragim Tajbakhsh / Hiroshi Sakai, Sumiaki Fukuda, So-ichiro Fukada, Shahragim Tajbakhsh, Revive 2017 Annual Consortium Meeting / Revive 2017 Annual Consortium Meeting Chantilly-Gouvieux / Chantilly-Gouvieux 2016/05/18-2016/05/20 Characterisation of human skeletal muscle stem cells by transplantation / Characterisation of human skeletal muscle stem cells by transplantation, Hiroshi Sakai, Shahragim Tajbakhsh / Hiroshi Sakai, Shahragim Tajbakhsh, YOUNG RESEARCHERS IN LIFE SCIENCES / YOUNG RESEARCHERS IN LIFE SCIENCES Paris / Paris 2016/03/14-2016/03/18 Characterisation of mouse and human skeletal muscle stem cells by transplantation / Characterisation of mouse and human skeletal muscle stem cells by transplantation, Hiroshi Sakai, Shahragim Tajbakhsh / Hiroshi Sakai, Shahragim Tajbakhsh, 5th International Congress of Myology / 5th International Congress of Myology Lyon / Lyon 2016/02/02-2016/02/04 Characterization of human skeletal muscle stem cells by transplantation / Characterization of human skeletal muscle stem cells by transplantation, Hiroshi Sakai / Hiroshi Sakai, Revive 2016 Annual Consortium Meeting / Revive 2016 Annual Consortium Meeting Chantilly-Gouvieux / Chantilly-Gouvieux 2015/01/27-2015/01/28 Investigating the role of Notch-Delta signalling in murine and human muscle stem cells / Investigating the role of Notch-Delta signalling in murine and human muscle stem cells, Hiroshi Sakai / Hiroshi Sakai, Revive 2015 Annual Consortium Meeting / Revive 2015 Annual Consortium Meeting Belle-Eglise / Belle-Eglise 概要はこちら(Description) Cell therapies for treating myopathic diseases with healthy donor cells have been proposed. Although satellite cells, which are mononuclear skeletal muscle stem cells and have the ability to self-renew and form new muscle fibers, are strong candidates for cell therapy as determined by studies with mice, human satellite cells are considerably less well understood. To qualify and expand mouse and human satellite cells, we transplanted them into the muscle of immunodeficient Pax7DTR/+:Rag2–/–:C–/– mice [1], in which endogenous mouse Pax7+ satellite cells can be depleted by the injection of diphtheria toxin. Upon transplantation, human satellite cells contribute to new muscle formation in vivo as assessed by the presence of human lamin A/C integrated in the host mouse muscle fibers. We are currently testing whether they could occupy the satellite cell niche in vivo, expand in the niche, and be re-isolated from host muscle to assess whether human satellite cells have self-renewal properties in mouse, and to what extent the mouse and human niches are compatible.
2014/05/14-2014/05/18 Exploration of mediators of a Notch-induced niche in vivo in the absence of differentiation / Exploration of mediators of a Notch-induced niche in vivo in the absence of differentiation, Hiroshi Sakai, Swetha Gopalakrishnan, Philippos Mourikis, Shahragim Tajbakhsh / Hiroshi Sakai, Swetha Gopalakrishnan, Philippos Mourikis, Shahragim Tajbakhsh, Molecular Biology of Muscle Development and Regeneration / Molecular Biology of Muscle Development and Regeneration Lecce 2014/04/10 Cell autonomous expression of Notch maintains muscle stem cells, their temporal specification, and niche formation / Cell autonomous expression of Notch maintains muscle stem cells, their temporal specification, and niche formation, Swetha Gopalakrishnan, Hiroshi Sakai, Philippos Mourikis, Shahragim Tajbakhsh / Swetha Gopalakrishnan, Hiroshi Sakai, Philippos Mourikis, Shahragim Tajbakhsh, Société Française de Biologie de Développement / Société Française de Biologie de Développement Paris / Paris 2014/02/03-2014/02/05 Defining the molecular properties of skeletal muscle stem cell self-renewal / Defining the molecular properties of skeletal muscle stem cell self-renewal, Hiroshi Sakai, Swetha Gopalakrishnan, Philippos Mourikis, Shahragim Tajbakhsh§ / Hiroshi Sakai, Swetha Gopalakrishnan, Philippos Mourikis, Shahragim Tajbakhsh§, Revive 2014 Annual Consortium Meeting / Revive 2014 Annual Consortium Meeting Belle-Eglise / Belle-Eglise 2012/09/07-2012/09/08 Fetal skeletal muscle progenitors contribute to functional myogenic regeneration. / Fetal skeletal muscle progenitors contribute to functional myogenic regeneration., Hiroshi Sakai, Takahiko Sato, Atsuko Sehara-Fujisawa / Hiroshi Sakai, Takahiko Sato, Atsuko Sehara-Fujisawa, 9th Japanese-French Symposium for ‘muscular dystrophy’ / 9th Japanese-French Symposium for ‘muscular dystrophy’ 2012/06/12-2012/06/17 Engraftment of Fetal Skeletal Muscle Progenitors into Dystrophic Muscles / Engraftment of Fetal Skeletal Muscle Progenitors into Dystrophic Muscles, Hiroshi Sakai, Takahiko Sato, Hidetoshi Sakurai, Kazunori Hanaoka, Didier Montarras, Margaret Buckingham, Atsuko Sehara-Fujisawa / Hiroshi Sakai, Takahiko Sato, Hidetoshi Sakurai, Kazunori Hanaoka, Didier Montarras, Margaret Buckingham, Atsuko Sehara-Fujisawa, International Society for Stem Cell Research 10th Annual Meeting / International Society for Stem Cell Research 10th Annual Meeting 2011/12/13-2011/12/16 Engraftment of Fetal Myogenic Progenitors into Dystrophic Muscles / Engraftment of Fetal Myogenic Progenitors into Dystrophic Muscles, Hiroshi Sakai, Takahiko Sato, Hidetoshi Sakurai, Didier Montarras, Margaret Buckingham, Atsuko Sehara-Fujisawa / Hiroshi Sakai, Takahiko Sato, Hidetoshi Sakurai, Didier Montarras, Margaret Buckingham, Atsuko Sehara-Fujisawa, 第34回日本分子生物学会年会 / The 34th Annual Meeting of the Molecular Biology Society of Japan 横浜 / Yokohama 概要はこちら(Description) [Purpose] Duchenne muscular dystrophy (DMD) is caused by the mutations of the gene encoding dystrophin. Although various skeletal muscle stem cells or progenitors are used to treat DMD, these cells exhibit poor capacity for the engraftment into regenerating muscle. Exploring muscle stem cells suitable for cell therapy, we examined capability of Pax3-positive embryonic and fetal myogenic progenitors (EMPs and FMPs) at different stages for the engraftment to skeletal muscle of DMD model mice. [Materials and Methods] Using a mouse strain with the GFP reporter gene targeted into Pax3, we developed cell-sorting method for isolating EMPs and FMPs. [Results] We isolated Pax3-GFP cells from embryos at E10.5 and from those at E16.5. While quantitative PCR showed that isolated Pax3-GFP cells at embryonic stage E10.5 (EMPs) contained neural crest cells, Pax3-GFP cells at fetal stage E16.5 (FMPs) had few neural crest cells. When plated on dishes after sorting GFP positive cells, the FMPs activated the myogenic program as demonstrated by sequential expression of myogenic regulatory factors, while the EMPs failed to grow under the same condition. Intramuscular transplantation of FMPs into dystrophic mice resulted in efficient engraftment of adult myofibers with restoration of dystrophin without formation of tumors, whereas mice that received EMPs presented no dystrophin positive myofibers. [Conclusion] The data here demonstrate that Pax3(+) FMPs have a high therapeuitc potential in muscular dystrophy. Understanding the cellular and molecular mechanisms underlying efficient transplantation of these MPs would help development of cell therapies for skeletal muscle degeneration diseases.
2011/11/24 The Engraftment of Fetal Skeletal Muscle Progenitors into Muscular Dystrophy Models., Hiroshi Sakai, Takahiko Sato, Hidetoshi Sakurai, Emi Shoji, Didier Montarras, Atsuko Sehara-Fujisawa, The 1st CDB-Regeneration Biology study Group meeting Kobe 2011/09/09-2011/09/10 Isolation of skeletal muscle progenitors from mouse embryos for skeletal muscle regeneration, Hiroshi Sakai, Takahiko Sato, Atsuko Sehara-Fujisawa, Kyoto University Global COE "Center for Frontier Medicine" International Symposium/Retreat 2011 Awaji 2010/11/05-2010/11/06 Isolation of skeletal muscle progenitors from mouse embryos and mouse iPS cells., Hiroshi Sakai, Hidetoshi Sakurai, Takahiko Sato, Atsuko Sehara-Fujisawa, Kyoto University Global COE "Center for Frontier Medicine" International Symposium/Retreat 2010 Awaji 2009/11/06-2009/11/08 Generation and isolation of skeletal muscle cells from iPSCs., Hiroshi Sakai, Atsuko Sehara-Fujisawa, Kyoto University Global COE "Center for Frontier Medicine" International Symposium/Retreat 2009 Awaji 2009/01/31-2009/02/01 Generation and isolation of skeletal muscle cells from iPS cells / Generation and isolation of skeletal muscle cells from iPS cells, 酒井 大史 / Hiroshi Sakai, 京都大学グローバル COE プログラム 「生命原理の解明を基とする医学研究教育拠点」第1回全体リトリート (キックオフリトリート) / Center for Frontier Medicine” Kick-Off Retreat 京都 / Kyoto
- 学歴(Academic Background)
-
2008/04/01-2012/03/01 京都大学大学院 (Kyoto University), 医学研究科 (Graduate School of Medicine), 医学専攻 (Department of Medicine) 2002/04/01-2008/03/01 麻布大学 (Azabu Universtiy), 獣医学部 (Department of Veterinary Medicine), 獣医学科
- 職歴(Career Background)
-
2018/02/01 愛媛大学 (Ehime University), プロテオサイエンスセンター (Proteo-Science Center), 助教 (Assistant Professor) 2013/06/01-2018/01/01 パスツール研究所 (Institut Pasteur), ポスドク (Postdoctoral Fellow)
- MISC(MISC)
-
2023/06 アンドロゲンによる骨格筋制御 / Androgen action on skeletal muscles
愛媛医学 / EHIME MEDICAL JOURNAL, 42(6), 45-48概要はこちら(Description) 我が国をはじめ、先進諸国では人口の高齢化が進行し、今後、更に高齢化率が進むと推測されている。高齢者におけるQuality of lifeが著しく低下する主な原因の一つは、サルコペニア(加齢生筋肉減少症)を含む、骨格筋の力と量の低下である。そのため、正常な筋力・筋量を維持することは、健康寿命延伸にとって極めて重要である。男性ホルモン(アンドロゲン, androgen)は、その投与によって骨格筋の大きさと強度を増強することが知られている。アンドロゲンは、アンドロゲン受容体 (androgen receptor, AR) と結合することでその機能を発揮するため、骨格筋におけるARの機能解析が、アンドロゲンによる筋肥大を理解するのに必須である。これまで、骨格筋を構成する実質細胞である骨格筋細胞、骨格筋の成体幹細胞である筋衛星細胞、骨格筋の間質に存在する間葉系前駆細胞の三種の細胞が、骨格筋の維持・肥大に関わり、それぞれARを発現していることが見出されてきた。本総説では、主に細胞特異的AR欠損マウスを用いて解析されてきた骨格筋におけるアンドロゲン/ARの機能を解説する。
- 学位(Degree)
-
博士(医学) (PhD) 京都大学 (Kyoto University)
- 競争的資金等の研究課題(External Funds)
-
2020/09/01-2022/03/01 サルコペニア予防を目指した骨格筋におけるアンドロゲン作用基盤の解明 (Integrated analysis of androgen receptor target genes in skeletal muscles for preventing sarcopenia), 公益財団法人 武田科学振興財団 (Takeda Science Foundation), 2020 年度 医学系研究助成 2000000(円) 2020/04/01-2022/03/01 サルコペニア予防を目指した骨格筋アンドロゲン標的遺伝子の解明 (Integrated analysis of androgen receptor target genes in skeletal muscles for preventing sarcopenia), 公益財団法人 中冨健康科学振興財団 (The Nakatomi Foundation), 研究助成金 (Research Grant) 1500000(円) 2019/04/01-2021/03/01 統合的解析を駆使したアンドロゲンによる骨格筋制御メカニズムの解明 (Integrated analysis of androgen signaling in skeletal muscles.), 日本学術振興会 (Japan Society for the Promotion of Science), 科学研究費助成事業 若手研究 (Grants-in-Aid for Scientific Research Grant-in-Aid for Early-Career Scientists) 若手研究 (Grant-in-Aid for Early-Career Scientists), 4160000(円) 2018/08/01-2019/03/01 統合的解析を駆使したアンドロゲンによる骨格筋制御メカニズムの解明 (Integrated analysis of androgen signaling in skeletal muscles.), 愛媛大学 (Ehime University), 研究活性化事業スタートアップ支援 (Grant-in-Aid Research Empowerment Program) 500000(円) 2018/08/01-2020/03/01 統合的解析を駆使したアンドロゲンによる骨格筋制御メカニズムの解明 (Integrated analysis of androgen signaling in skeletal muscles.), 日本学術振興会 (Japan Society for the Promotion of Science), 科学研究費助成事業 研究活動スタート支援 (Grants-in-Aid for Scientific Research Grant-in-Aid for Research Activity start-up) 研究活動スタート支援 (Grant-in-Aid for Research Activity start-up), 2990000(円) 2018/04/01-2019/03/01 筋ジストロフィー治療を目的とした骨格筋幹細胞の機能探索 (Functional analysis of muscle skeletal muscles for treating muscle dystrophy), 公益財団法人 大阪難病研究財団 (The Osaka Medical Research Foundation For Intractable Diseases), 平成30年度 医学研究助成 1000000(円)